Interferon-inducible protein 9 (CXCL11)-induced cell motility in keratinocytes requires calcium flux-dependent activation of mu-calpain.
نویسندگان
چکیده
Keratinocyte migration is critical to reepithelialization during wound repair. The motility response is promoted by growth factors, cytokines, and cytokines produced in the wound bed, including those that activate the epidermal growth factor (EGF) receptor. The Alu-Leu-Arg-negative CXC chemokine interferon-inducible protein 9 (IP-9; also known as CXCL11, I-TAC, beta-R1, and H-174) is produced by keratinocytes in response to injury. As keratinocytes also express the receptor, CXCR3, this prompted us to examine the role and molecular mechanism by which IP-9 regulates keratinocyte motility. Unexpectedly, as CXCR3 liganding blocks growth factor-induced motility in fibroblasts, IP-9 alone promoted motility in undifferentiated keratinocytes (37 +/- 6% of the level of the highly motogenic EGF) as determined in a two-dimensional in vitro wound healing assay. IP-9 even enhanced EGF-induced motility in undifferentiated keratinocytes (116 +/- 5%; P < 0.05 compared to EGF alone), suggesting two separate mechanisms of action. IP-9-increased motility and -decreased adhesiveness required the intracellular protease calpain. The increases in both motility and calpain activity by IP-9 were blocked by pharmacological and molecular inhibition of phospholipase C-beta3 and chelation of calcium, which prevented an intracellular calcium flux. Molecular downregulation or RNA interference-mediated depletion of mu-calpain (calpain 1) but not M-calpain (calpain 2) blocked IP-9-induced calpain activation and motility. In accord with elimination of IP-9-induced de-adhesion, RNA interference-mediated depletion of calpain 1 but not calpain 2 prevented cleavage of the focal adhesion component focal adhesion kinase and disassembly of vinculin aggregates. In comparison, EGF-induced motility of the same undifferentiated keratinocytes requires the previously described extracellular signal-regulated kinase to the M-calpain pathway. These data demonstrate that while both EGF- and IP-9-induced motility in keratinocytes requires calpain activity, the isoform of calpain triggered depends on the nature of the receptor for the particular ligand. Interestingly, physiological nonapoptotic calcium fluxes were capable of activating mu-calpain, implying that the calcium requirement of mu-calpain for activation is attained during cell signaling. This is also the first demonstration of differential activation of the two ubiquitous calpain isoforms in the same cell by different signals.
منابع مشابه
Brain-derived neurotrophic factor and epidermal growth factor activate neuronal m-calpain via mitogen-activated protein kinase-dependent phosphorylation.
Calpain is a calcium-dependent protease that plays a significant role in synaptic plasticity, cell motility, and neurodegeneration. Two major calpain isoforms are present in brain, with mu-calpain (calpain1) requiring micromolar calcium concentrations for activation and m-calpain (calpain2) needing millimolar concentrations. Recent studies in fibroblasts indicate that epidermal growth factor (E...
متن کاملNecessity of inositol (1,4,5)-trisphosphate receptor 1 and mu-calpain in NO-induced osteoclast motility.
In skeletal remodeling, osteoclasts degrade bone, detach and move to new locations. Mechanical stretch and estrogen regulate osteoclast motility via nitric oxide (NO). We have found previously that NO stimulates guanylyl cyclase, activating the cGMP-dependent protein kinase 1 (PKG1), reversibly terminating osteoclast matrix degradation and attachment, and initiating motility. The PKG1 substrate...
متن کاملIp-10 Inhibits Epidermal Growth Factor–Induced Motility by Decreasing Epidermal Growth Factor Receptor–Mediated Calpain Activity
During wound healing, fibroblasts are recruited from the surrounding tissue to accomplish repair. The requisite migration and proliferation of the fibroblasts is promoted by growth factors including those that activate the epidermal growth factor receptor (EGFR). Counterstimulatory factors in wound fluid are postulated to limit this response; among these factors is the ELR-negative CXC chemokin...
متن کاملCXCR3 requires tyrosine sulfation for ligand binding and a second extracellular loop arginine residue for ligand-induced chemotaxis.
CXCR3 is a G-protein-coupled seven-transmembrane domain chemokine receptor that plays an important role in effector T-cell and NK cell trafficking. Three gamma interferon-inducible chemokines activate CXCR3: CXCL9 (Mig), CXCL10 (IP-10), and CXCL11 (I-TAC). Here, we identify extracellular domains of CXCR3 that are required for ligand binding and activation. We found that CXCR3 is sulfated on its...
متن کاملDipeptidyl peptidase IV (CD26) on T cells cleaves the CXC chemokine CXCL11 (I-TAC) and abolishes the stimulating but not the desensitizing potential of the chemokine.
Dipeptidyl peptidase IV (DPP IV/CD26) is a costimulatory molecule as well as a protease highly expressed on T cells. Purified DPP IV has been recognized to inactivate peptide hormones, neuropeptides, and some chemokines by cleavage behind a proline residue at the penultimate N-terminal amino acid position. Here, we identified another substrate for DPP IV among the chemokine family: the interfer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 25 5 شماره
صفحات -
تاریخ انتشار 2005